-

UNCLASSIFIED 3 b o
L :
SECUR:TY CLASSIFICATION OF THIS PAGI (wnnDaraEnrered) 'yi“’ r' Lo / \

REPORT DOCUMENTATION PAGE ,t,;g;ggggfmg g)
1. REPORY NUMBER (2. GOVT ACCESSION ND. F3. RECIPIENT'S CATALOG NUmBER

4. T11LE (andSubtrtie)

Ada Compiler Validation Summary Report:
Control Data Corporation, CYBER 180 Ada Compiler, Version
1.1, CYBER 180-930-31 (host and target) B880624S81,091°2

1. AUTHOR(s)

5. TYPE OF REPORY & PERIOD COVERLD

24 June 19R88-24 June 19%0
8. '(l'ORlXNG"bRG. REPORT NUMBER

8. COM.AACT OR GRANT NUMEE R(s)

National Bureau of Standards,
Gaithersburg, Marvland, VSA

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PRUDECT, TASK
AREA B WORX UN]T NUMEERS

AD-A208 475

National Byreau of Standards,
Gaithersburg, Maryland, USA
CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE

Ada Joint Program Office _
United States Department of Deense

. TR OV PRGES
wWashington, DC 20301-3081

14, MONITORING AGENCY NAM: & ADDRESS(/f different from Controling Office) 15. SECURITY CLASS (of thisreport)
National Bureau of Standards, 1saLr\CLA;:SSt’Ifc‘AEg)N/Douvuom'
Gaithersburg, Maryland, USA ’ BE&DUEE ° *

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (of the abstractentered in Biock 20 if different from Report)

UNCLASSIFIED DT[(:

FLECT
18. SUPPLEMINTARY NDTES MAY 25]989

ry D

16. KEYWORDS (Continue onreverse side if necessary and identify by biock number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facxhty. AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue onreverse side if necessary and dentify by block number)

CYBER 180 Ada Compiler, Version 1.1, Control Data Corporation, National Rureau of
Standards, CYBER 180-930-31 under NOS/VE, Level 700 (host and target), ATVQ 1.09

¥
-2

DD "U 1473 €01710w O 1 Wov 65 15 0BSOLETL | -
1A% 73 S/N 0102-LF-014-8601 UNCLASSIFIED

SECURITY CLASSIFICATION OF TRIS PAGE (wWhen Dats Entered)

‘“

Ada Compiler
VALIDATION SUMMARY REPORT:
Certificate Number: 88062451.09132
Control Data Corporation
CYBER 180 Ada Compiler, Version 1.1
HOST and TARGET COMPUTER:
CYBER 180-930-31

Completion of On-Site Testing:

24 June 1988

Prepared By:
Software Standards Validation Group

|

AVF Control Number: NBS88VCDC510

Institute for Computer Sciences and Technology

National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C. 20301-3081

Accesion For

NTIS CRa&d
DTIC TAB a
Unannounced (]

Justitication

By ...
Distribition |

Availatitity Codes

- _iH/;v:;l— ond] c;rm
Dist | Special

Ada Compiler Validation Summary Report:

Compiler Name: CYBER 180 Ada Compiler, Version 1.1
Certificate Number: 880624S1.09132

Host: Target:
CYBER 180-930-31 under CYBER 180-930-31 under
NOS/VE, Level 700 NOS/VE, Level 700

Testing Completed 24 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

WAy

Ada Validation F ilyy yQ
Dxr. David K. Jefferso

Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899

#da Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria, VA 22311

5 ﬁ
fj\liun & "'\. »(ab/_‘

Acda Joint Program Office

Mr. William S. Ritchie, Acting Director

Department of Defense ‘
Washington DC 20301 |

Ada Compiler Validation Summary Report:

Compiler Name: CYBER 180 Ada Compiler, Version 1.1
Certificate Number: 880624S1.09132

Host: Target:
CYBER 180-930-31 under CYBER 180-920-31 under
NOS/VE, Level 700 NOS/VE, Level 700

Testing Completed 24 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

A

Ada Validation Facili: y&
Dr. David K. Jefferso

Chief, Information Systems
Engineering Division

National Bureau of Standards
Gaithersburg, MD 20899

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analygfs
Alexandria, VA 22311

Ada Joint Program Office
Virginia L. Castor
Director

Department of Defense
Washington DC 20301

CHAPTER 1

e
(€ I R

CHAPTER 2

w

CHAPTER

W W W Wwiwwww

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

NN NN B WN

W N =

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES . .

DEFINITION OF TERMS

ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED . .
IMPLEMENTATION CHARACTERISTICS .

TEST INFORMATION

TEST RESULTS .
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS

INAPPLICABLE TESTS

TEST, PROCESSING, AND EVALUATION MODIFICATIONS .

ADDITIONAL TESTING INFORMATION .
Prevalidation
Test Method
Test Site

CONFORMANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TZST PARAMETERS

WITHDRAWN TESTS

WWWLwWwwWwwww
'

'
AN UL URNNN

CHAPTER 1

INTRODUCTION

/-._ " -

This Validation Summary Report TVSR*’describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability;f?@ﬁC}i{:tAn Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that

,/ﬂls not in the StaESEESLJ

~ Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the

maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed

—during the process of testing this compiler are given in this report.

e U, .

This information in this report is derived from the test results

produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. - The purpose of validating is to

ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempL to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

On-site testing was completed 24 June 1988 at Sunnyvale, California.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. 1In the United
States, this is provided in accordance with the “Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler ha: no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

1-2

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manuaji for the Ada Programmin nguage,
ANSI/MIL-STD-1815A, February 1983 and 1SO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. d ompiler Validation Capabilit mplementers' Guide.,
December 1986,

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 86352-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,

1-3

Failed test

including cross-compilers, translatcrs, and

interpreters.

An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (LMP) is a committee

Maintenance established by the Ada Board to recommend

Passed test

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

An ACVC test for which a compiler generates the expected
result.

Targec The computer for which a compiler generates code.

Test An Ada program that checks a compiler’s conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single tesrt,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to
contains both
classes: A,

the Ada Standard is measured using the ACVC,
legal and illegal Ada programs structured into six test
B, C, D, E, and L.
identifies the class to which it belongs.
are executable,
results during execution.
compilation errors.

The ACVC

The first letter of a test name
Class A, C, D, and E tests
and special program units are used to report their
Class B tests are expected to produce
Class L tests are expected to produce compilation

or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A
test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in

1-4

the Ada language) are not treated as reserved words by an Ada compiler.
A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of wunits in a
library--a compiler may refuse to compile a Class D test and still be a

conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as 1inapplicable. If a Class D test compiles successfully, it is

self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution 1is
attempted. A Class L test passes if it is rejected at link time--that
is, &an attempt to execute the main program must generate &an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of
REPORT and CHECK FILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are

1-5

operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicabilit- of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is nc* necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

CHAPTER 2

CONFIGURATION TNFORMATION

2.1 CONFIGURATION TESTED
The candidate counnilacion system for this validation was tested uncer
the following configuration:

Compiler: CYBER 180 Ada Compiler, Version 1.1

ACVC Version: 1.9

Certificate Number: 88062451.09132

Host Computer:

Machine: CYBER 180-930-31
Operating System: NOS /VE

Level 700
Memory Size: 64Mbyes RAM

Target Computer:

Machine: CYBER 180-930-31
Operating System: NOS /vT

Level 700
Memory Size: 64Mbvtes RAM

Additional Configuration Information:
4.4 Gbytes disk droives
terminals connected using CDCNET
2 magnetic tape drives
2000 1/m printer

Communications Network: none

2-1

2.2 IMPLEMENTATICN CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit

implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following

characteristics:

- Capacities.

The compiler correctly processes tests containing 1loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits

nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative part. (See
test DSSA03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See
tests D4AOO2A, DALAOO2B, D4AOO4A, and D4AOO4RB.)

- Predefined types.

This implementation supports the additional predefined types
LONG_FLOAT in the package STANDARD. (See tests B86001BC and
B86001D.)

- Based literals.

An implementation 1s allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

- Expression evaluation.
Apparently all default initialization expressions or record

components are evaluated before any value is checked to belong
to a component’'s subtype. (See test C32117A.)

2-2

r---------------.----I--I--IIIIIIIII----—

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C359034.)

Apparently NUMERIC_ERROR 1is raised when an integer 1literal
operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..2.)

- Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4ACL4A.)

- Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT _ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises CONSTRAINT_ ERROR. (See
test £26002a.)

CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

CONSTRAINT_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT 4 2 components. (See test C36202B.)

2-3

rIIIIllIlIlIlIIllllIlIIIllIlIlIIIlllllllIlllllllIlllllIIIIIIIIIIIIII----r**

A packed BOOLEAN array having a ’'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT _ERROR when the array subtype is declared.
(See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONTRAINT_ERROR when the array
subtype is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises CONSTRAINT_ERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression’'s subtype is
compatible with the target’'s subtype. In assigning two-
dimensional array types, the expression appears to be evaluated
in its entirety before CONSTRAINT ERROR is raised when checking
whether the expression's subtype is compatible with the target's
subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning vrecord types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINT_ERROR
is raised when checking whether the expression’'s subtype is
compatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong

to an index subtype. (See test E43211B.)

2-4

- Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is not supported, then the implementation
must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests C355021..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C€355071..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
not supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are not supported. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are not supported.
(See tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
tyvpes are not supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)
- Input/output.

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with discriminants

2-5

without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO cannot be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

There are strings which are illegal external file names for
SEQUENTIAL 10 and DIRECT_IO. (See tests CE2102C and CE2102H.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL IO.
(See tests CE2102D and CE2102E.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_IO and DIRECT_IO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can not be
created in OUT_FILE mode, and cannot be created in IN_FILE mcde.
(See test EE3102C.)

Only one internal file can be associated with each external file
for text I/0 for both reading and writing. (See tests CE2110B,
CE2111D, CE3111A..E (5 tests), CE3114B, and CE31154.)

Only one internal file can be associated with each external file
for sequential I/0 for both reading and writing. (See tests
CE2107A..C (3 tests).)

Only one internal file can be associated with each external file
for direct 1I/0 for both reading and writing. (See tests
CE2107E, CE2107G..1 (3 tests) and CE2111H.)

More than one internal file can be associated with each external
file for direct I/0 for reading only. (See test CE2107F.)

An external file associated with more than one internal file
cannot be deleted for SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO.
(See test CE2110B.)

Temporary sequential files are not given names. Temporary
direct files are not given names. (See tests CE2107D..E (2
tests), CE2107H..I(2 tests) CE2108A, CE2108C, and CE3112A.)

2-6

- Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations so long as no instantiations of those
units precede the bodies. This compiler requires that a generic
unit’s body be compiled prior to instantiation, and so the unit
containing the instantiations is rejected. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations so long as no instantiations of those
units precede the bodies. This compiler requires that a generic
unit’s body be compiled prior to instantiation, and so the unit
containing the instantiations is rejected. (See tests CA2009C,
BC3204C.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011lA.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122 tests of
112 were

which 27 had been withdrawn. 0f the remaining tests,

determined to be inapplicable to this implementation.
the code, processing, or grading for 70 tests were required to
successfully demonstrate the test objective.

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

Modifications to

(See section 3.6.)

RESULT TEST CLASS TOTAL
A B c D E L
Passed 105 1044 1757 17 14 46 2983
Inapplicable 5 7 96 0 4 0 112
Withdrawn 3 2 21 0 1 0 27
TOTAL 113 1053 1874 17 18 46 3122
3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 _11 _12 _13 _l4

—— ——— —— — —— ——— ——r—t, it —

Passed 187 558 639 242 166 98 140 326 135 36 232 3 221 2983
Inapplicable 17 14 35 6 0 O 3 1 2 0 2 0 32 112
Withdrawn 2 14 3 0 0 1 2 ©0 O O 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 VWITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time
of this wvalidation:

B28003A E28005C C34004A C35502P A35902C C€35904A
C35904E C35A03E C35A03R C37213H C37213J C37215¢C
C37215E C37215G C37215H c38102C C41402A C45332A
C45614C A74106C C85018B C87B04B CC1311B BC3105A
AD1AOlA CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 112
test were inapplicable for the reasons indicated:

C241131..X (16 tests) contain contain lines whose length is greater than
this implementation’s maximum line length of 132 characters.

€355081..J (2 tests) and C35508M..N (2 tests) wuse enumeration
representation clauses for boolean types containing representational

3-2

values other than (FALSE => 0, TRUE > 1). These clauses are not
supported by this compiler.

C35702A uses SHORT_FLOAT which is not supported by this implementation.

A39005B and C87B62A use length clauses with SIZE specifications for
derived integer types or for enumeration types which are not supported
by this compiler.

A39005E and C87B62C use length clauses with SMALL specifications which
are not supported by this implementation.

A39005G uses a record representation clause which is not supported by
this compiler.

The following (14) tests use SHORT_INTEGER, which is not supported by
this compiler.

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B0O9D

The following (13) tests use LONG_INTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

C45231D requires a macro substitution for any predefined numeric types
other than INTEGER, SHORT_INTEGER, LONG_INTEGER, FLOAT, SHORT_FLOAT, and
LONG_FLOAT. This compiler does not support any such types.

C4A013B uses a static value that is within the range of the most
accurate floating point base type, and MACHINE_OVERFLOWS is false for
this type. The test executes and reports NOT_APPLICABLE.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package STANDARD. There is no such type for this
implementation.

C96005B requires the range of type DURATION to be different from those
of its base type; in this implementation there are no values between
DURATION'FIRST and DURATION’BASE’FIRST.

CA2009C and CA2009F compile the bodies of generic units separately and
following a compilation that contains instantiations of those units.
This compiler requires that a generic unit’s body be compiled prior to
instantiation, and so the unit containing the instantiations is
rejected.

BC3204C and BC3204F compile the bodies of generic units separately and

3-3

following a compilation that contains instantiations of those units.
This compiler requires that a generic unit's body be compiled prior to
instantiation, and so the unit containing the instantiations is
rejected.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT_IO
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this compiler.

CE2105A..B (2 tests), CE2111H, CE2407A, CE3104A, CE3109A this
implementation does not allow the creation of a file when FILE MODE is
set to IN_FILE.

CE2107A..C (3 tests) this implementation does not allow more than one
internal sequential file to be associated with the same external file.

CE2107D..E (2 tests), CE2107H..I (2 tests), CE2108A, CE2108C, CE3112A
this implementation does not allow temporary files to have a name.

CE2107G this implementation does not allow more than one intermnal direct
file with mode OUT_FILE or mode INOUT_FILE to be associated with the
same external file.

CE2110B, CE2111D, CE3111A..E (5 tests), CE3114B, CE3115A this
implementation does not allow more than one internal text file to be
associated with the same external file.

The following 19 tests require a floating-point accuracy that exceeds
the maximum of 28 digits supported by this implementation:

C24113Y (01 test) C35705Y (01 test)
C35706Y (01 test) C35707Y (01 test)
C35708Y (01 test) €35802Y..Z (02 tests)
C45241Y (01 test) C45321Y (01 test)
C45421Y (01 test) C45521Y..2 (02 tests)
C45324Y..Z (02 tests) C45621Y..Z (02 tests)
C45641Y (01 test) C46012Y. .2 (02 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made with the approval of
the AVO, and are made in cases where legitimate implemenvtation behavior
prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter

3-4

the default size of a collection; splitting a Class B test into
sub-tests so that all errors are detected; and confirming that messages
produced by an executable test demonstrate conforming behavior that
wasn't anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 70 Class B tests (74 test files).

The following Class B test files were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B22003A B26001A B26002A B26005A B28001D B29001A
B2A003A B2A003B B2A003C B33301A B35101A B37106A
B37301B B37302A B38003A B38003B B838009A B38009B
B51001A B53009Aa B54A01C B54A01J B54A01K B55A01A
B61001C B61001D B61001F B61001H B610011 B61001M
B61001R B61001W B66001C B67001A B67001C B67001D
B91001A B91002A B91002B B91002C B910602D B91002E
B91002F B91002G B91002H B910021 B91002J B91002K
B91002L B95030a B95061A B95061F B95061G B95077A
B97101A B97101E B97102A B97103E B97104G BA1101BOM
BA1101B1 BA1101B2 BA1101B3 BAll01B4 BCl1109A BC1109C
BC1109D BC1202a BC1202B BC1202E BC1202F BC1202G
BC2001D BC2001E

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the CYBER 180 Ada Compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the CYBER 180 Ada Compiler using ACVC Version 1.9 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a CYBER 180-930-31 operating under NOS/VE, Level 700; the
host and targe computers were the same.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being
written to the magnetic tape. Tests requiring modifications during the
prevalidation testing were not included in their modified form on the
magnetic tape. The contents of the magnetic tape were loaded directly
onto the host computer.

3-5

After the test files were loaded to disk, the full set of tests was
compiled and linked on the CYBER 180-930-31, and all executable tests
were run on the CYBER 180-930-31.

The compiler was tested using command scripts provided by Control Data
Corporation and reviewed by the validation team. The compiler was
tested using all default (option/switch) settings except for the
following:

Option/Switch Effect

INPUT Name of the source text file
PROBRAM LIBRARY Name of the program library
LIST Name of the source listing file
ERROR Name of the error file

Tests were compiled, linked, and executed using a single host/target
computer. Test output, compilation listings, and job logs were captured
on magnetic tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Sunnyvale, California and was completed on 24
June 1988.

3-6

APPENDIX A

CONFORMANCE STATEMENT

APPENDIX A

CONFORMANCE STATEMENT

Compiler Implementor:

Control Data Corporation
215 Moffett Park Drive
Sunnvvale, CA 984083

Ada Validation Facilityv:

Software Standards Validation Group

Institute for Computer Science and Technologv
National Bureau of Standards

Building 225, Room A266

Gajthersburg, Marvland 20899

Base Configuration

Base Compiler Name: CYBER 180 ADA Compiler: Version 1.1
Host Architecture ISA:
CYBER 180 - 830-31 OS&VER #: NOS/VE LEVEL 700
Target Architecture ISA:
CYBER 180 ~ 930-31 OS&VER &#: NOS/VE LEVEL 700
DECLARATION OF CONFORMANCE
2 R R R R R IR R R PR SRR 22T SRR3R 220382
Derived Compiler Registration

Derived Compiler Name: CYBER 180 ADA Compiler: Versiorn 1.1

Host Architecture ISA: CYRER 180 Series NOS/VE LEVEL 700
Tardet Architecture 1ISA: CYEBER 180 Series NCS/VE LFVEL 700

L R R R R R S R N R R R R R R R R R R R R R R RS R R R R R RS R E E E T R PR R R R R R

Implementor’s Declaration

I. the undersigned, representing Control Data Corporation, have
implemented no deliberate extensions to the Ada Language Standard
ANSTI/MIL-STD-1815A in the compiler listed in this declaration. I
declare that Control Data Corporation is the owner of record of
the ///ada language compiler listed above and, as such, is
recponsible for maintaining said compiler in conformance o
ANSI/MIL-STD-1815A, All certificates and registrations for Ada
language compiler listed in this declaration shall be made only
in the owner's name:

Control Data Corporation

/{‘;,A,L_Z </ % , Manager Date: (Q/f/f?

Richard J. Tlifton

Adat is a registered trademark of the United States Government
(Ada Joint Program Office).

Owner's Declaration

I, the undersigned, representing Conitrol Data Corporation, take
full responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the
final Validetion Summary Report. I further agree to continue to
comply with the Ads trademark policy, as defined by the Ada Joint
Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

Control Dmta Corporation

) Cz. , Manager Date: /&/5-/)’2

Ricnard J% Cliftén

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to certain
allowed restrictions on representation clauses. The implementation-
dependent characteristics of the CYBER 180 Ada Compiler, Version 1.1,
are described in the following sections which discuss topics in Appendix
F of the Ada Language Reference Manual (ANSI/MIL-STD-1815A)..
Implementation-specific portions of the package STANDARD are also
included in this appendix.

package STANDARD is

type INTEGER is range -9_223 372_036_854_775_808
9 223 372_036_854_775_807;

type FLOAT is digits 13 range
-16#7.FFFF_FFFF_FFF8#E1023..
16#7 .FFFF_FFFF_FFF8#E1023;
type LONG_FLOAT is digits 28
-16#7 . FFFF_FFFYF_FFFF_FFFF_FFFF_FFF8#E1023..
16#7 .FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023;

type DURATION is delta 0.001 range
-8.58%934591999#E09 .. 92.765625000000=E-04;

end STANDARD;

B-1

Implementation-Dependent Characteristics F

F.1 NOS/VE Ada Pragmas i F-2
, F.2 NOS/VE Ada Attributes L. o F-3
* F.3 Specification of the Package SYSTEM F-3

F.4 Restrictions on Representation Clauses F-3

F4.1 Length Clauses it F-4
F.4.2 Enumeration Representation Clauses F-4
F.4.3 Record Representation Clauses F-4

F.5 Implementation-Dependent Names F-§

F.6 Address Clauses and Interrupts F-§

F.7 Unchecked Type Conversions F-5

F.8 Input-Output Packages F-5

F.8.1 External Files and File Objects F-b
F.8.2 Exceptions for Input-Output Errors F-5
F.83 Low Level Input-Output F-6

F.9 Other Implementation-Dependent Characteristics F-6

F.9.1 Implementation Features F-7
F.9.1.1 Predefined Types i F-7
F.9.1.2 Basic Types o o it e e F-8
F.9.1.3 Compiler e F-8
F.9.1.4 Definition of 2 Main Program F-9
F9.15 TIME Type i i i it ittt e et e e e e e e F-9
F.9.1.6 Machine Code Insertions F-9
F.9.2 Entity Types e F-9
F.9.21 Array Types« F-9
F.9.2.2 Record Types i i it F-10
F.9.2.2.1 Simple Record Types (Without Discriminants) F-10
F.9.2.2.2 Record Types With Discriminants F-11
F9.23 Access Typeso F-11
F.O93 Tasking F-11
F.9.4 Interfaces to Other Languages F-11
F.9.5 Command Interfaces F-11
F.9.5.1 Program Library Utility Commands F-12
F.9.5.2 Compiler Command F-12
F.9.5.3 Linker Command e F-12
F.9.54 Execution 0 i i it it e F-12
F.9.6 Values of Data Attributes F-12
F.9.6.1 Values of Integer Attributes F-13
F.9.6.2 Values of Floating Point Attributes F-13
F.9.6.3 Values of Long Floating Point Attributes F-14
F.9.6.4 Values of Duration Attributes F-14

Im_plementation-DeEendent Characteristics F

This appendix summarizes the implementation-dependent characteristics of NOS/VE Ada
by listing the following:

" ® NOS/VE Ada pragmas
¢ NOS/VE Ada attributes
® Specification of the package SYSTEM
® Restrictions on representation clauses
® Implementation-dependent names
® Address clauses and interrupts
® Unchecked type conversions
® Input-output packages
® Other implementation-dependent characteristics

Shading is not used in this appendix.

Revision A Implementation-Dependent Characteristics F-1

_

F.1 NOS/VE Ada Pragmas

F.1 NOS/VE Ada Pragmas

NOS/VE Ada supports the following pragmas as described in the
ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except as shown below:

e [NLINE

This pragma causes inline expansion of a subprogram excent as described in annex
B of this manual (see 6.3.2, 10.6).

e INTERFACE

This pragma is supported for CYBIL, FORTRAN, and the NOS/VE Math Library,
as discussed in 13.9.1, 13.9.2, and 13.9.3, respectively.

e PACK
Objects of the given type are packed into the nearest 2**n bits.

e SHARED
This pragma is not supported for the following types of variables:

- Variables of type LONG_FLOAT

- Variables of a subtype of type LONG_FLOAT

- Variables of a type derived from type LONG_FLQAT

- Variables of a subtype derived from type LONG_FLOAT

® SUPPRESS

This pragma is supported, but it is not possible to restrict the check suppression to
a specific object or type.

NOS/VE Ada does not support the following pragmas:

e CONTROLLED

e MEMORY_SIZE

e OPTIMIZE

¢ STORAGE_UNIT

® SYSTEM_NAME

NOS/VE Ada supports the following implementation-defined pragmas:

e COMMON

This pragma accepts the name of a FORTRAN labeled common as its single
argument. This pragma is allowed only in the specification of a library package.
This pragma specifies that the library package specification can be accessed as a
labeled common by a FORTRAN subroutine. To ensure proper results, the items
declared in the Ada library package specificaticn must be of a type corresponding to
the type of the matching items in the FORTRAN common specification. The
argument name must be a legal NOS/VE and FORTRAN name,

F-2 Ada for NOS/VE Reference Manual Revision A

F.2 NOS/VE Ada Attributes

e EXPORT

This pragma accepts a language name and a subprogram name as arguments. This
pragma is allowed only in the body of a library procedure. This pragma specifies
the other language (FORTRAN) and informs the Ada compiler that it must provide
an entry point in the procedure by the specified subprogram name. (FORTRAN is
. the only supported language.) The subprogram name must be a NOS/VE and
. FORTRAN legal name. Parameter passing is not supported.

F.2 NOS/VE Ada Attributes

NOS/VE Ada supports all the attributes described by the ANSL'MIL-STD-1815A-1983,
Reference Manual for the Ada Programming Language. It does not provide any
implementation-defined attributes. The NOS/VE implementation of the PPADDRESS

a tribute returns the prefix P, the 48-bit process virtual address (PVA) right-justified
within a 64-bit variable of the predefined type INTEGER.

F.3 Specification of the Package SYSTEM

package SYSTEM is
type ADDRESS is access INTEGER,;
type NAME is (CYBERI180);

SYSTEM_NAME : constant NAME := CYBERI180;

STORAGE_UNIT : constant := 64; ~ 64-bit machine
MEMORY_SIZE : constant := 128*1048576; - 128 megabytes

MIN_INT : constant := -9_223_372_036_854_775_808; -- (-2**63)
MAX_INT : constant := 9_223_2372_036_854_775_807; -~ (2**63)-1
MAX_DIGITS : constant := 28,

MAX_MANTISSA : constant := 63;

FINE_DELTA : constant := 2#1.0#E-63; —~ 2**(-63)

TICK : constant := 0.001;

subtype PRIORITY is INTEGER range 0 .. 127;
end SYSTEM;

F.4 Restrictions on Representation Clauses

NOS/VE Ada implements representation clauses as described by the ANSI standard for
Ada. It does not allow representation clauses for a derived type.

NOS/VE Ada supports the type representation clauses with some restrictions:
® Length clauses

¢ Enumeration representation clauses

® Record representation clauses

NOS/VE Ada does not support address clauses or interrupts.

Revision A Implementation-Dependen: Characteristics F-3

F.4.1 Length Clauses

F.4.1 Length Clauses
NOS/VE Ada supports the attributes in the length clauses as follows:

e TSIZE
Not 'supported

e T'STORAGE_SIZE (collection size)

Supported

® T'STORAGE_SIZE (task activation size)
Supported

e T'SMALL

Not supported. The compiler always chooses for SMALL the largest power of 2 not
greater than the delta in the fixed accuracy definition of the first named subtype T
of a fixed point type.

For example, NOS/VE Ada uses the declaration:
type ADA_FIXED is delta 0.05 range 1.00 .. 3.00;

to set the ADA_FIXED'SMALL attribute to 0.03125(2~5),

the largest power of 2 not greater than deita 0.05.
F.4.2 Enumeration Representation Clauses
In NOS/VE Ada enumeration representation clauses, the internal codes must be in the
range of the predefined type INTEGER.
F.4.3 Record Representation Clauses

NOS/VE Ada implements record representation clauses as described by the ANSI
language definition. It does not support alignment clauses in record representation
clauses.

The component clause of a record representation clause gives the storage piace of a
component of a record, by providing the following pieces of data:

® The name gives the name of the record component.

® The simple expression following the reserved word AT gives the address in storage
units, relative to the beginning of the record, of the storage unit where the
component starts.

® The range in the component clause gives the bit positions, relative to that starting
storage unit, occupied by the record component.

NOS/VE Ada supports the range for only those record components of discrete types
(integer or enumeration) or arrays of discrete elements. The range must specify 1, 2, 4,
8, 16, 32 or 64 bits. Furthermore, if the range of a record component specifies 8 or
more bits, then the first bit position of the range must be a multiple of 8 bits. A range
can overlap 2 adjacent storage urits.

F-4 Ada for NOS/VE Reference Manual Revision A

F.5 lmplementation-Dependent Names

F.5 Implementation-Dependent Names

NOS/VE Ada does not support implementation-dependent names to be used in record
representation clauses.

- F.6 Address Clauses and Interrupts

NOS/VE Ada does not support address clauses or interrupts.

F.7 Unchecked Type Conversions

NOS/VE Ada allows unchecked conversions when objects of the source and target types
have the same size.

F.8 Input-Output Packages

The discussion of NOS/VE Ada implementation of input-output packages includes the
following:

® External files and file objects
® Exceptions for input-output errors

® Low level input-output

F.8.1 External Files and File Objects

NOS/VE Ada can process files created by another language processor as long as the
data types and file structures are compatible.

NQOS/VE Ada supports the following kinds of external files:
® Sequential access files (see 14.1)
® Direct access files (see 14.1)

¢ Text input-output flies (see 14.3)

F.8.2 Exceptions for Input-Output Errors

The ANSI/MIL-STD-1815A-1983 Reference Manual for the Ada Programming Language
describes conditions under which input-output exceptions are raised. In addition to
these, NOS/VE Ada raises the following exceptions:

® The exception DATA_ERROR is raised when:

- An attempt is made to read from a direct file a record that has not been
defined.

= A check reveals that the sizes of the records read from a file do not match the

sizes of the Ada variables. NOS/VE Ada performs this check except in those few
instances where it is too complicated to do so (see 14.2.2).

Revision A Implementation-Dependent Characteristics F-§

_

‘

F.8.3 Low Level Input-Output

® The exception USE_ERROR is raised when:
- The function NAME references a temporary file (see 14.2.1).

- An attempt is made to delete an external direct file with multiple accesses
while more than one instance of open is still active. The file remains open and
the position is unchanged (see 14.2.1).

- An attempt is made to create a sequential, text, or direct file of mode IN_FILE
(see 14.2.1).

- An attempt is made to create an existing file (see 14.2.1).

- An attempt is made to process a text file with a line that is longer than 511
characters.

- An attempt is made to set the page length for a text file that does not have the
file contents of LIST (see 14.3.3).

- An attempt is made to issue a new page for a text file that does not have the
file contents of LIST.

- An attempt is made to open or create a file with the FORM parameter
specifying anything other than an empty string for sequential access or direct
access files.

- An attempt is made to set a line for a text file that does not have the file
contents of LIST and the value specified by TO is lesc than the current line
number.

- An attempt is made to open or create a text file with the FORM parameter
specifying any other value than LIST, LEGIBLE, or UNKNOWN.

- An attempt is made to open or create a text file with attribute FILE_
CONTENTS not matching the file format specfied by the FORM parameter.

F.8.3 Low Level Input-Output
NOS/VE Ada does not support the package LOW_LEVEL_IO.

F.9 Other Implementation-Dependent Characteristics

The other implementatior.-dependent characteristics of NOS/VE Ada are discussed as
follows:

® Implementation features

e Entity types

® Tasking

® Interface to other languages
® Command interfaces

® Values of data attributes

F8 Ads for NOS/VE Reference Manual Revision A

F.9.1 Implementation Features

_

F.9.1 Implementation Features

The NOS/VE Ada implementation features are listed as follows:

Predefined types

Basic types

Compiler

Definition of a main program
TIME type

Machine code insertions

F.9.1.1 Predefined Types

NOS/VE Ada implements all the predefined types described by the
ANSI/MIL-STD-1815A-1983, Reference Manual for the Ade Programming Language,
except:

LONG_INTEGER
SHORT_FLOAT
SHORT_INTEGER

Revision A

Implementation-Dependent Characteristics F-7

F.9.1.2 Basic Types

F.9.1.2 Basic Types

The sizes of the basic types are as follows:

Type Size (bytes)
EN UME.B.ATION 8
FLOAT. 8
INTEGER 8
LONG_FLOAT 16
TASK 8

In NOS/VE Ada, the enumeration type includes predefined type boolean and character
as well as user defined enumeration types.

F.9.1.3 Compiler

NQOS/VE Ada provides an ANS] standard Ada compiler.

The NOS/VE Ada compiler has the following characteristics:

® Source code lines up to 132 characters long

e Up to 100 static levels of nesting of blocks and/or subprograms
® External files up to one segment, 2**31-1 bytes, in length

® A generic body can be compiled in a separate file from its specification if it is
compiled before it is instantiated. If the specification, body and instantiation are in
the same file, the instantiation of the generic can be either before or after the
compilation of the body.

® A generic non-library package body or a generic non-library subprogram body
cannot be compiled as a subunit in a separate file from its specification.

F-8 Ada for NOS/VE Reference Manual Revision A

.-

F.9.1.4 Definition of & Main Program

For Better Performance

The compiler throughput improves when multiple compilation units are submitted.
However, if the number of compilation units grows over a certain limit, for example 50
small compilation units of about 50 lines each, or if the first compilation units are
large, the throughput actually degrades.

Using the pragma INLINE, where applicable, resuits in faster object code by avoiding
the call/return instructions.

F.9.1.4 Definition of a Main Program

NOS/VE Ada requires that the main program be a procedure without parameters. The
name of a compilation unit used as a main program must follow NOS/VE naming
standards. The name can be up to 31 characters in length and must be a valid
NOS/VE name and a valid Ada identifier. Any naming error is detected at link time
only. For more information, see the Ada for NOS/VE Usage manual.

F.9.1.5 TIME Type

NOS/VE Ada defines the type TIME as an integer representing the Julian date in
milliseconds.

F.9.1.6 Machine Code Insertions

NOS/VE Ada does not support machine code insertions.

F.9.2 Entity Types

This discussion contains information on:
® Array types

® Record types

® Access types

F.9.2.1 Array Types
Arrays are stored row wise, that is, the last index changes the fastest.

An array has a type descriptor that NOS/VE Ada uses when the array is one of the
following:

® A component of a record with discriminants
® Passed as a parameter

® Created by an allocator

Revision A Implementation-Dependent Characteristics F-8

“

0

F.9.2.2 Record Types

For each index, NOS/VE Ada builds the following information triplet:

Lower Bound

v Upper Bound

. Element Size

For multi-dimension arrays, NOS/VE Ada allocates the triplets consecutively.

Element size is expressed in number of storage units (64-bit words). If the array is
packed, the element size is expressed in number of bits and represented by a negative
value.

NOS/VE Ada strings are packed arrays of characters. Each component of the array is
an 8-bit (1-byte) character. Packed arrays of booleans use 1 bit per component and are
left-justified. Arrays of integers or enumeration variables can also be packed. Each
component uses n bits. Thus, the integer or enumeration subtype is in the range
~2**n .. (2**n)-1.

Note that all objects start on a storage unit (64-bit word) boundary.

At run time when NOS/VE Ada elaborates an array definition, the amount of available
space remaining either on the stack or in the heap limits the maximum size of the
array (see 3.6).

F.9.2.2 Record Types

At run time when NOS/VE Ada elaborates a record definition, the amount of available
space remaining either on the stack or in the heap limits the maximum size of the
record (see 3.7).

NOS/VE Ada raises the exception STORAGE_ERROR at run time when the size of an
elaborated object exceeds the amount of available space.

The rest of this discussion on how records are stored includes:
¢ Simpie record tvpes {without discriminants;

® Record types with discriminants

F.9.2.2.1 Simple Record Types (Without Discriminants)

In the absence of representation clauses, each record component is word aligned.
NOS/VE Ada stores the record components in the order they are declared.

A fixed size array (lower and upper bounds are constants) is stored within the record.
Otherwise, the array is stored elsewhere in the heap, and is replaced by a pointer to
the array value (first element of the array) in the record.

F-10 Ada for NOS/VE Reference Manual Revision A

e, |

IR

F.9.2.2.2 Record Types With Discriminants

F.9.2.2.2 Record Types With Discriminants

The discriminants are stored first, followed by all the other components as described
for simple records.

If a record component is an array with index values that depend on the value of the

. discriminant(s), the array and its descriptor are both allocated on the heap. They are

replaced by a pair of pointers in the record. One points to the array value and the
other points to the array descriptor.

F.9.2.3 Access Types

Objects of access type are €-byte pointers, left-justified within a word, to the accessed
data contained in some allocated area in the heap. If the accessed data is of type array
or packed array, the allocated area also contains the address of the array descriptor in
front of the data.

F.9.3 Tasking

NOS/VE Ada supports tasking by running all Ada tasks as NOS/VE concurrent
procedures activated and controlled by the tasking kernel which is an integral part of
the NOS/VE compiler run time system. Contact the site administrator to change the
site’s TASK__LIMIT to run more concurrent tasks than the site currently allows. See
the Ada for NOS/VE Usage manual for more information on NOS/VE Ada tasking.

F.9.4 Interfaces to Other Languages

NOS/VE Ada supports calls to CYBIL and FORTRAN subprograms and to NOS/VE
Math Library subroutines with the following restrictions:

® CYBIL interface
(See 13.9.1 and chapter 6 of the Ada for NOS/VE Usage manual).

® FORTRAN interface
{See 13.9.2 and chapter 6 of the Ada for NOS/VE Usage manual).

e Math Library interface
(See 13.9.3 and chapter 6 of the Ada for NOS/VE Usage manual).
F.9.5 Command Interfaces
The discussion of the command interfaces implemented by NOS/VE Ada includes:
® Program Library Utility commands
® Compiler command
® Linker command
® Execution commands

NOS/VE Ada commands use the syntax and language elements for parameters
described in the NOS/VE System Usage manual.

Revision A Implementation-Dependent Characteristies F-11

_*

F.9.5.1 Program Library Utility Commands

F.9.5.1 Program Library Utility Commands

NOS/VE Ada provides a hierarchically structured (tree structured) program library to
fulfill the ANSI Ada language definition requirements. A node (sublibrary) in the tree
can contain up to 4096 compilation units. The Ada for NOS/VE Usage manual contains
a detailed discussion of the NOS/VE Ada implementation of the program library.

. .
F.9.5.2 Compiler Command

The NOS/VE Ada compiler can compile an ANSI standard Ada program on NOS/VE.
See the Ada for NOS/VE Usage manual for information about the NOS/VE Ada
compiler command.

F.9.5.3 Linker Command

The NOS/VE Ada linker checks the order of compilation of the compilation units of a
program before the program can be executed.

See the Ada for NOS/VE Usage manual for more information about the linker
command.

F.9.5.4 Execution

NOS/VE Ada provides several ways to load and execute an Ada program. They are
described in the following manuals:

® Ada for NOS/VE Usage
® CYBIL for NOS/VE System Interface Usage
® NOS/VE Object Code Management Usage

F.9.6 Values of Data Attributes

The package STANDARD contains the declaration of the following predefined types and
their attributes:

® Integer (INTEGER)

® Floating point (FLOAT)

® Long floating point (LONG_FLOAT)
® Duration (DURATION)

F-12 Ada for NOSVE Reference Manual Revision A

_*

F.9.6.1 Values of Integer Attributes

A

Attribute Value

FIRST -9_223_372_036.854_775_808
LAST 9_223_372_036_854_775_807
SIZE 64

WIDTH 20

F.8.6.2 Values of Floating Point Attributes

F.9 6.1 Values of lnteger Attributes

Attribute Value

DIGITS 13

EMAX 180

EPSILON 56.843_419_961#E~14

FIRST -16#7.FFFF_FFFF_FFF8#E1023
LARGE 1.532495540866E54

LAST 16#7.FFFF_FFFF_FFF8#E1023

MACHINE_EMAX
MACHINE_EMIN
MACHINE _MANTISSA
MACHINE _OVERFLOWS
MACHINE_RADIX
MACHINE_ROUNDS
MANTISSA
SAFE_EMAX
SAFE_LARGE
SAFE_SMALL

SIZE

SMALL

Revision A

4095
-4096
48
TRUE

FALSE

45

4095
5.221944407066E1232
9.574977460952E-1234
64
3.262652233999E-55

Implementation-Dependent Characterisuics F-13

F.9.6.3 Values of Long Floating Point Attributes

F.9.6.3 Values of Long Floating Point Attributes

Attribute Value
DIGITS 28

EMAX | 380

FIRST . -16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023
LARGE 2.462625387274654950767440006E114

LAST 16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023

MACHINE_EMAX
MACHINE_EMIN
MACHINE _MANTISSA
MACHINE_OVERFLOWS
MACHINE_RADIX
MACHINE_ROUNDS
MANTISSA
SAFE_EMAX
SAFE_LARGE
SAFE_SMALL

SIZE

SMALL

4095
-4096
96
TRUE

FALSE

95

4095
5.221944407065762533458763552E1232
9.574977460952185357946731011E-1234
128
2.030353469852519378619219645E-115

F.9.6.4 Values of Duration Attributes

Attribute Value

DELTA 1.000000000000E-03
LARGE 8.589934591999E09
MACHINE_OVERFLOWS TRUE
MACHINE_ROUNDS FALSE

SIZE 64

SMALL 9.765625000000E-04
F-14 Ada for NOS/VE Reference Manual

EEEEEEEEEEE—,— R R

Revision A

NOS/VE Ada Packages 4

A package specifies a group of logically related entities, such as types, objects of those
types, and subprograms with parameters of those types. Ada includes three classes of

N packages:

. ® Predefined package STANDARD

® Predefined library packages such as SYSTEM, CALENDAR, and TEXT_I0
® User-defined packages

Packages enable you to express and enforce an abstract solution in the syntax of Ada.
The package structure enables system designers to modularize a solution. The
separation of package specifications enables the designers to identify necessary
packages, and then develop the bodies later. This chapter presents an overview of
package structure and describes the NOS/VE Ada implementation-defined packages.

Package Structure

Packages provide a convenient structure for grouping logically related items (for
example, groups of common declarations or groups of subprograms). Packages, like
other Ada program units, have a two-part structure: a specification and a body.

Package Specifications

During the design phase of your project, you c¢an code your package specifications as
part of your high-level design. You can also decide what information you want to make
visible to your users and what information you prefer to hide from them. Once you
reach the development phase of your project, your development team can code the
package bodies. Through the use of stubs and separate compilation, as described in the
Ada for NOS/VE Reference Manual, a system engineer can specify the necessary types,
objects, and subprograms for later development.

Declarations create instances of a given type. Through object declarations, you can
create variables and constants.

Package Bodies

The information hiding feature within Ade enables you to code a body of a package
and then store it as a private segment of code.

Revision A NOS/VE Ads Packages 4-1

R

_— -

Implementation-Defined Packages

Implementation-Defined Packages
NOS/VE Ada Implementation Feature

Once you create your NOS/VE Ada program library, as described in chapter 2, you
gain immediate access to the following system supplied packages:

Package Defines

STANDARD Predefined number types
SYSTEM Hardware characteristics
CALENDAR Clock and calendar

I0_EXCEPTIONS Run time exceptions

TEXT_I0 Input-output for string, character, integer, real, and _numeration
types

SEQUENTIAL_IO Sequential file management
_. DIRECT_10 Direct file management

By using the SHOW command from inside the Ada Program Library Utility, you can
display the status of each package, including the date of the last compilation of each
specification and body.

4-2 Ada for NOS/VE Usage Manual Revision A

—\“

()

Irnplementation-Defined Packages

Package STANDARD

The package STANDARD contains the declarations of the predefined types: INTEGER,
FLOAT, LONG_FLOAT, and DURATION.

+ Type FLOAT provides single precision accuracy of 13 significant decimal digits. Type
""LONG_FLOAT provides double precision accuracy of 28 sigrificant decimal digits.

 All numbers in package STANDARD are decimal unless otherwise indicated. Figure 4-1
displays the notation conversion used for the values listed in this package. Note that
the exponent indicates the power of the base by which the preceding number must be
multiplied. For example, 4#2#E3 means 2°(4%) or 128; the base is 4.

with TEXT_IO;
use TEXT_I0;

procedure NOTATION_EXAMPLE is

package INTIO is new INTEGER_IO (INTEGER),
use INTIO;

x : INTEGER := 4#2#E3;

begin

PUT ("4#2#E3 equals: ");

PUT(x);

NEW_LINE;

PUT_LINE ("In arithmetic notation that means 2*(4 cubed).");
end NOTATION_EXAMPLE,;

Figure 4-1. Procedure NOTATION_EXAMPLE

Revision A NOS/VE Ada Packages 43

‘

* lmpiementation-Defined Packages

Figure 4-2 lists the INTEGER, FLOAT, LONG_FLOAT, and DURATION types and
their attributes as provided by package STANDARD. J

type INTEGER
INTEGER'FIRST := -9_223_372_036_854_775_808;
INTEGER'LAST := 9_223_372_036_854_775_807,
INTEGER'SIZE := 64,

type FLOAT
FLOAT'DIGITS := 13; — Single Precision
FLOATEMAX := 180;
FLOATEPSILON := 5.6_843_419_961#E-14;
FLOATTFIRST := -16#7.FFFF_FFFF_FFF8#E1023;
FLOAT'LARGE := 1.532495540866#E54;
FLOATLAST := 16#7.FFFF_FFFF_FFF8#E1023;
FLOAT'MACHINE_EMAX := 4095;
FLOAT'MACHINE_EMIN := -4096;
FLOAT'MACHINE_MANTISSA := 48;
FLOAT'MACHINE_OVERFLOWS := TRUE;
FLOAT'MACHINE_RADIX := &;
FLOAT'MACHINE_ROUNDS := FALSE,
FLOAT'MANTISSA := 45;
FLOAT'SAFE_EMAX := 4095;

FLOAT'SAFE_LARGE := 5.221944407066#E1232;

FLOAT'SAFE_SMALL := 9.5749774609524#E-1234;

FLOAT'SMALL := 3.26265223999#E-55;

FLOAT'SIZE := 64, O

type LONG_FLOAT
LONG_FLOAT'DIGITS :
LONG_FLOATEMAX :
LONG_FLOATFIRST :
-16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023;
LONG_FLOAT'LARGE :=
2.462625387274654950767440006#E114;
LONG_FLOAT'LAST :=
16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023;
LONG_FLOAT'SMALL :=
2.030353469852519378619219645#E-115;
LONG_FLOATMACHINE_EMAX := 4095;
LONG_FLOAT'MACHINE_EMIN := -4096;
LONG_FLOAT'MACHINE _MANTISSA := 96;
LONG_FLOAT'MACHINE_OVERFLOWS := TRUE;
LONG_FLOAT"MACHINE_RADIX := 2;
LONG_FLOAT"MACHINE_ROUNDS := FALSE;
LONG_FLOAT'MANTISSA := 95;
LONG_FLOATSAFE_EMAX := 4095;
LONG_FLOAT'SAFE_LARGE :=
5.221944407065762533458763552#E1232;
LONG_FLOAT'SAFE_SMALL := 9.574977460952185357946731011#E-1234;
LONG_FLOAT'SIZE := 128;

28; -~ Double Precision
380, .-

Figure 4-2. Package STANDARD Excerpts
(Continued)

44 Ada for NOSVE Usage Manual Revision A

‘
Implementation-Defined Packages

(Continued)

L type DURATION

DURATION'DELTA := 1.000000000000#E-03;
DURATION'LARGE := 8.589934591999#E09:
~ DURATION'MACHINE_ROUNDS := FALSE.
! DURATION'MACHINE_ OVERFLOWS := TRUE;
DURATION'SMALL := 9.765625000000#E-04:
DURATION'SIZE := 64;

Figure 4-2. Package STANDARD Excerpts

Revision A NOS/VE Ada Packages 4-3

h

* lmplementation-Defined Packages

Package SYSTEM

lists package SYSTEM.

The package SYSTEM defines the hardware characteristics of NOS/VE Ada. Figure 4-2

package SYSTEM is
type ADDRESS is access INTEGER,;
type NAME is (CYBER180);

SYSTEM_NAME : constant NAME := CYBERI180;
STORAGE_UNIT : constant NAME := 64;

- 64-bit machine

MEMORY_SIZE : constant := 128*1048576;

-~ 128 megabytes

- (-2**63)

- 2%%63-1

MAX_DIGITS : constant := 28;
MAX_MANTISSA : constant := 63;
FINE_DELTA : constant := 2#1.0#E-63;
- 2**(-63)

TICK : constant := 0.001;

subtype PRIORITY is INTEGER range 0..127,
end SYSTEM;

MIN_INT : constant := -9_223_372_036_854_"775_808;

MAX_INT : constant := 9_223_372_036_854_775_807,

Figure 4-3. Package SYSTEM

Table 4-1 summarizes NOS/VE Ada characteristics. Most of the characteristics listed in
table 4-1 are from package SYSTEM, but others are defined either by NOS/VE or

elsewhere in the NOS/VE Ada compiler.

Table 4-1. NOS/VE Ada Characteristics

Characteristic Value Defined By

Minimum integer -2+*63 Package SYSTEM
Maximum integer 2%*63-1 Package SYSTEM
Maximum digits 28 Package SYSTEM
Maximum mantissa 63 Package SYSTEM

Maximum line length 132 characters NOS/VE

Maximum name length 31 characters NOS/VE
for 8 main program

46 Ads for NOSVE Usage Manual

Revision A

|
b’

“’

Implementauon-Defined Packages

Package CALENDAR

The package CALENDAR defines the clock and calendar definitions of NOS/VE Ada.
Figure 4-3 lists package CALENDAR.

package CALENDAR is
type TIME is private;

subtype YEAR_NUMBER is INTEGER range 1901 .. 2099;
subtype MONTH_NUMBER is INTEGER range 1 ., 12;
subtype DAY_NUMBER is INTEGER range 1 .. 31;

subtype DAY_DURATION is DURATION range 0.0 .. 86_400.0;

function CLOCK return TIME;

function YEAR (DATE : TIME) return YEAR_NUMBER;
function MONTH (DATE : TIME) return MONTH_NUMBER,
function DAY (DATE : TIME) return DAY_NUMBER;
function SECONDS (DATE : TIME) return DAY_DURATION;

procedure SPLIT (DATE : in TIME,
YEAR : out YEAR_NUMBER,;
MONTH : out MONTH_NUMBER,;
DAY : out DAY_NUMBER,;
SECONDS : out DAY._DURATION);

function TIME_OF (YEAR : YEAR_NUMBER,
MONTH : MONTH_NUMBER;
DAY : DAY_NUMBER;
SECONDS : DAY_DURATION := 0.0) return TIME;

function "+" (LEFT : TIME; RIGHT : DURATION) return TIME;
function "+" (LEFT : DURATION; RIGHT : TIME) return TIME,
function "-" (LEFT : TIME; RIGHT : DURATION) return TIME;
function "-" (LEFT : TIME; RIGHT : TIME) return DURATION;

function "<" (LEFT, RIGHT : TIME) return BOOLEAN;
function "< =" (LEFT, RIGHT : TIME) return BOOLEAN;,
function ">" (LEFT, RIGHT : TIME) return BOOLEAN;
function "> =" (LEFT, RIGHT : TIME) return BOOLEAN;

TIME_ERROR : exception; —~ can be raised by TIME_OF, "+", and "-"
private

- implementation-dependent
end;

Revision A

Figure 4-4. Package CALENDAR

See appendix I for listings of NOS/VE Ada packages TEXT._10, SEQUENTIAL_IO, and
DIRECT_IO.

End of NOS/VE Ada Impiementation Feature

NOS/VE Ada Packages 4-7

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG_ID1 <131 x "A">1
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 <131 x "A">2
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 <65 x "A">3<66 xX"A">
Identifier the size of the
maximum input line length with
varying middle character.

S$BIG_ID4 <65 x "A">4<66 xX"A">
Identifier the size of the
maximun input line length with
varving middle character.

$BIG_INT_LIT <129 x "0">298
An integer literal of value 298
with enough 1leading zeroes so
that 1t 1is the size of the
maximum line length.

$BIG_REAL LIT <126 x "0">69.0E1
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

c-1

$BIG_STRING1
A string literal which when
catenated with BIG_STRING2
yields the image of BIG_IDI.

$BIG_STRING2

A string literal which when

catenated to the end of
BIG_STRINGl yields the image of
BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters less than the size

of the maximum line length.

S$COUNT_LAST
A universal integer literal
whose value is

TEXT_IO.COUNT'LAST.

SFIELD _LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

S$FILE_NAME WITH_BAD_CHARS
An external file name that
either contains invalid
characters or 1is too 1long.

$FILE_NAME WITH_WILD CARD CHAR

An external file nanme that

either contains a wild card

character or is too long.
$GREATER_THAN DURATION

A universal real 1literal that

lies between DURATION'BASE’'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'’LAST.

$TLLEGAL EXTERNAL FILE NAME1

An external file name which
contains invalid characters.

Cc-2

<66 x "A">

<65 x "A">1

<112 x " ">

9223372036854775807

67

BAD_CHARS#.%!X

This_File Name_Has_To_Be_Too_

Long_Wild Card_Char_Do_Not_Exist

100000000.0

7000000000.0

BADCHARS"@. ™!

S$ILLEGAL_EXTERNAL FILE NAME2
An external file name which
is too long.

SINTEGER_FIRST
A universal integer 1literal
whose value 1is INTEGER'FIRST.

SINTEGER_LAST
A universal integer 1literal
whose value 1is INTEGER'’LAST.

S1INTEGER_LAST PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN DURATION
A universal real 1literal that
lies between DURATION'BASE’'FIRST
and DURATION’FIRST or any value
in the range of DURATION.

$LESS_THAN DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE’'FIRST.

SMAX DIGITS
Maximum digits supported for
floating-point types.

$MAX IN LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAY INT_PLUS 1
A& universal integer 1literal
whose value is SYSTEM.MAX INT+1.

$MAX LEN_INT_BASED LITERAL
A universal integer based
literal whose value is 2#ll#
with enough leading zeroes in
the mantissa to be MAX IN_LEN
long.

c-3

MUCH_TOO_LONG_NAME FOR A VE_

FILE

-9 223 372 _036_854_775_808

9 223 372_036_854_775_807

9223372036854775808

-100000000.0

-7000000000.0

28

132

9223372036854775807

9223372036854775808

2:<127 X "0">11:

SMAX LEN REAL BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including the quote
characters.
SMIN_INT
A universal integer literal
whose value is SYSTEM.MIN_ INT.
SNAME

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based
highest

integer literal whose

order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

16:<125 X "O">F.E:

"<130 x nAn>n

-9223372036854775808

DOES_NOT_EXIST

8#1<20 x "7">6

LR

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 27 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "Al-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later

E28005C:

C34004A;

C35502P:

A35902C:

C35904A:

C35904B:

C35A03E,
& R:

C37213H:

C37213J:

declaratiomn.

This test requires that ‘PRAGMA LIST (ON);’ not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT ERROR.

Equality operators in lines 62 & 69 should be inequality
operators.

Line 17's assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINT _ERROR, for that value lies outside of the actual
range of the type.

The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINT ERROR, because its upper bound exceeds that
of the type.

The subtype declaration that is expected to raise
CONSTRAINT_ERROR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC_ERROR or CONSTRAINT_ERROR for reasons not
anticipated by the test.

These tests assume that attribute 'MANTISSA returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn’t support this assumption.

The subtype declaration of SCONS in 1line 100 is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 wrongly raises CONSTRAINT_ERROR.

D-1

C37215¢C,
E, G, H:
C38102¢C:

C41402A:

C453324A:

C45614C:

A74106C,
C85018B,
C87B04B,
CC1311B:

BC3105A:

ADIAO1lA:

CE2401H:

CE3208A:

Various discriminant constraints are wrongly expected
to be incompatible with type CONS.

The fixed-point conversion on line 23 wrongly raises
CONSTRAINT ERROR.

'STORAGE_SIZE 1is wrongly applied to an object of an access
type.

The test expects that either an expression in line 52 will
raise an exception or else MACHINE_OVERFLOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINE_OVERFLOWS may still be TRUE.

REPORT.IDENT_INT has an argument of the wrong type
(LONG_INTEGER).

A bound specified in a fixed-point subtype declaration

lies outside of that calculated for the base type, raising
CONSTRAINT_ERROR. Errors of this sort occur re lines 37 & 59,
142 & 143, 16 & 48, and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

Lines 159..168 are wrongly expected to be illegal; they are
legal.

The declaration of subtype INT3 raises CONSTRAINT ERRCR for
implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong
values.

This test expects that an attempt to open the default output
file (after it was closed) with mode IN_FILE raises NAME ERROR
or USE_ERROR; by Commentary AI-00048, MODE_ERROR should be
raised.

D-2

